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TECHNICAL NOTE 3005

HEAT TRANSFER AND SKIN FRICTION BY AN INTEGRAL METHOD
IN THE COMPRESSIBLE LAMINAR BOUNDARY LAYER WITH
A STREAMIISE PRESSURE GRADIENT

By Ivan E. Beckwlth
SUMMARY

A simplified method has been developed for the calculation of heat
transfer and skin friction in the compressible laminar boundary layer
with an arbitrary Prandtl number near unity and an arbitrary streamwise
pressure gradient and wall temperature distribution. By comparison of
numerical results-with some exact solutions, the method is shown to
give accurate results for the case of boundary-layer cooling when a
certain fifth-degree polymnomial is used for the thermal profile. The
use of this polynomial also results in recovery factors which are
accurate to within a few percent on both the flat plate and the circu-
lar cylinder normal to the flow.

The method may be extended to calculation of heat transfer with
equilibrium dissociation provided the wall temperature is below dis-
sociation temperatures. A numerical exsmple for the heat transfer in
the stagnation region of a blunt body shows that equilibrium dissocia-
tion probably has little effect on the actual heat-transfer rate.

The effect of lateral radius of curvature on skin friction and
heat transfer is investigated for compressible flow. The approximate
method used herein indicates that this effect 1s negligible unless the
square root of the wall Reynolds number (based on body length and the
gas properties evaluated at the wall) is of the order of or less than
100 times the body fineness ratio.

INTRODUCTION

The calculation of the laminar boundery leyer with an arbitrary
pressure gradient is as yet impractical except by the Von Kérman-
Pohlhausen integral methods. In general, these methods are somewhat
tedious to apply; however, recent improvements have reduced the calcu-
lations with zero heat transfer to a slmple quadrature of certain
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functions of the known free-stream velocity and temperature distribu-
tions. These various refinements which both simplify and improve the
accuracy of the basic integral methods have been developed by Thwaites
(ref. 1), Truckenbrodt (ref. 2), and others. (See discussion in ref. 3.)
Rott and Craebtree (ref. 3) have extended the method of Thwaites to com-
pressible flow with zero heat transfer and a Prandtl number of unity.
Morduchow and Clarke (ref. 4) have also treated the problem of compres-
sible flow with zero heat transfer and a Prandtl number of unity by a
different approach which, for practical purposes, gives results of equal
accuracy and equal simplicity of calculation. The method of reference 4
results in velocity profiles of sufficlent accuracy for stability calcu-
lations, whereas the methods of references 1 and 3 cannot be used for
this purpose.

If the heat transfer is included as another unknown, the problem
is more complicated, particularly for an arbitrary surface temperature
distribution. Dienemann (ref. 5) has shown that the calculation with
heat transfer in incompressible flow can be simplified by application
of the Holstein-Bohlen version of the Von Karman-Pohlhsusen method.
For an isothermal surface and a Prandtl number of unity, Morduchow
(ref. 6) uses assumptions similar to those in reference 4 to simplify
the problem of heat transfer on & sweat-cooled wall in compressible
flow. The work of reference 6 is an extension (to include a normal
velocity at the wall) of the method of Kalikhman (ref. 7) which also
gives detalled results only for a Prandtl number of unity but is not
restricted to an isothermal surface. The stagnation-temperature pro-
files are assumed as fourth-degree polynomlials in the normal distance
in both references 6 and 7.

Recent theoretical and experimental work (for example, refs. 8§ to
11) has indicated that boundary layers in high-speed flow may be laminar
at relatively large Reynolds numbers under conditions of boundary-layer
cooling and favorable pressure gradients. Therefore, the accurate cal-
culation of heat transfer and skin friction under these conditions is
of considerable interest. The purpose of the present paper 1s to trace
the development of a method by which these calculations can be made
with relative simplicity. The present method, which 1s essentlally a
modification of Kalikhman's method (ref. 7), uses an arbitrary Prandtl
number neer unity and several different stagnation-temperature profiles
in conjunction with a fourth-degree velocity profile. The principal
simplifying assumptions and procedures are (1) equsl thermal and veloc-
ity boundary-leyer thicknesses, (2) linear viscosity-temperature rela-
tion, (3) use of the first coefficient in the polynomial for the
stagnation-temperature profile as one of the unknowns in the final solu-
tion of the momentum and energy equations, and (4) application of the
Holstein-Bohlen method to avoid the use of the second derivative of the
stream velocity. The results in the form of heat-transfer and skin-
friction coefficients and recovery factors are then compared with exact
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solutions for the nonisothermal flat plate (ref. 12), stagnation flow
(refs. 13 and 14), and flow over a cylinder (ref. 15). The recovery

factors6§n a cylinder are compared with the supersonic data of Eber
ref. 16).

The effects of equilibrium dissociation (as given by Moore for the
flet plate in ref. 17) on the heat transfer at a surface cooler than
gbout 2,000° R in the presence of a veloclty gradient are also considered
in the present analysis. A numerical example is then given that shows

the approximate effect of dissociation in the stagnation region of a
blunt-nose body.

After the present investigation was completed, the author learned
of a paper by Paul A. Libby and Morris Morduchow of the Polytechnic
Institute of Brooklyn who, in some instances, used procedures and
assumptions similar to those of the present analysis. Their method
used a sixth-degree polynomial for the veloclty profile and a seventh-
degree polynomial for the stagnation-temperature profile. Although
the sixth-degree velocity profile is probebly necessary for stability
calculations, the seventh-degree thermal profile, as indicated by this
analysis, in some cases glves less accurate results than a simpler
fourth~ or fifth-degree thermal profiie.

SYMBOLS
Ay ,An, . . coefficients of veloclty profile (eq. (12))
80,81, - - - &, constants in expression for wall temperature (eq. (47))
By,By, - - - coefficients for stagnation-enthalpy profile t (eq. (16))
by,bo, . . . coefficients for the density function (eq. (26))
Cr mean skin-friction coefficient
ce local skin-friction coefficient
Cp specific heat at constant pressure
Fy "local" recovery factor (eq. (62))
Fp' "local free stream" recovery factor (eq. (63)) \;

A

e s ——
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N A

Py = ————L/n HyPy dx

Pully J o

. ul
H stagnation enthalpy, b + )
=2
H=3
h static enthalpy
Ko,K3, - - - constants (eq. (75))
k conductivity
L characteristic dimension
M Mach number
1 3
m constant, 3 1280070
N Nusselt number
n degree of polynémial for wall temperature (eq. (47))
P pressure
a local convective heat-transfer rate
R =.pil_-OL—
°L 1o
ujL
Ry. = P13
L H1
R = Dol
Heo

r radial distance from axis for cylindrical coordinates
T absolute temperature

Te wall temperature for zero heat transfer



— T
TW=T—§-
1
. u2
T* stagnation temperature, T + 5 -
D
)

Te
te = =~

T 1 .
- _t*¥ H-Hy

t*l Hl—HW
t* = H - By = H - ¢p Ty for T, < 2,000° R
u velocity in x-direction
v velocity in y-direction
W velocity ratio, u/uy
X,y boundary-laeyer coordinates; y = 0 1is body surface
x=2=
*T L
Yy ' (0) heat-transfer parameter for nonisothermal flat plate

in notation of ref. 12

Z computation parameter defined by equation (67)
@, ,00 - - - constants in energy-loss thickness (eq. (35)), numerical

values given in table I

-1 ¥ - Ty
By = cos~t >
ratio of specific heats (approximately 1.40 for air)
A nominal boundary-layer thickness in x,n plane
1
At = AL (1 - ®)an*  (eq- (25))
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5% displacement thickness in x,n plane (eg. (23))
' J
1 Dorodnitsyn variable, / £
o 1
Ny modified Dorodnitsyn variable for slender body (eq. (AT))
=1
Ny = T]A—r
8 momentum-loss thickness in x,7 plane (eq. (22))
5=2
L
A modified Pohlhausen parameter (eq. (15))
A modified Pohlhausen parsmeter for slender body (eq. (Alk))
K viscosity
Sy B
Tw {f X
A
Ty (pjuix
p mass density
o* stagnation density
o Prandtl number, cpu/k
T local shear stress
P . energy-loss thiclkness integral in x,7n plane (eq. (24))

8|
[
e
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Q "density integral, A.J[i <¢l - Ei)dn*
o \P "
Subscripts:
1 local free stream just "outside" boundary layer
o free stream at infinity
W wall velues
B or o some constant reference quantity
D flat-plate values (zero pressure gradient)

BASIC EQUATIONS

In the following discussion, the boundaery-layer equations and
thelr integrals are given in their most general form where the only
restrictions are that the gas is a continuum and that the boundary
layer is thin compared with a characteristic dimension of the body,
that is, the characteristic Reynolds number of the body is large. For
application to dissociation, two-additional restrictions are used.
These restrictions are as follows: the assumption of equilibrium dis-
sociation throughout so that no rate process terms are required in
the energy equation (see ref. 17), and the restriction that all wall
temperatures sre less than about 2,0000 R. The two-dimensional equations
only are considered herein since the results may be extended to axisym-
metric flow by Mangler's transformation (ref. 18) except where conditions
are such that the boundary-layer thickness is of the order of the lateral
radius of the body. The effects of these conditions ere investigated in
detail in the appendix for a slender cylinder alined pasrallel to the
flow.

The boundary-layer equations for steady flow are written as follows:

Momentum equation:

3

pu%+pv§;1—=-§§+$@ (1)

L

_ %
0= T (2)
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Continulity equation:

%pu+gay_pv=o (3)
Energy equation:
2
m%+pv%=u%+%k%>+u(%> (&)

. 2
or in terms of the stagnation enthalpy H =h + uE-,

My oy W3, M), 2N By
pu eV ay(uay)+ayanU l:l (5)
where the Prandtl number o 1is defined as

g =

wIF
BlE

cp = &k

Integration of equation (1) across the boundery layer (with the
conditions u=v =0 at y=0 end u=uy &t y =) and the use
of ‘equations (2) and (3) result in

a [T(u _w)\e o Qf w_w2)\ e .
T - B Wt — - 5| W+
ax Jo \U1  uy?/P” 0 @1 u 2Py

) p_l_i)_p_ 13 My 3w
J (B2 = Y e o), (6)

du

where Bernoulli's equation g—_}% = -puy dJTl has been used for the pres-

sure gradient, and the free-stream stagnation density p*l is assumed
constant along the edge of the boundary layer.
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[ Similarly, integration of equation (5) and the use of equation (3)
resu

t in
a [Tuf, _F\e 1,du1_1dhwf
\ dau/; ul( tT)F‘Ider(Eidx t*ldx>0 ( ]) V=
Mo (3 -
awp*lulK§§ t*l>w i (7

where the free-stream stagnation enthalpy H; 1s assumed constant
Transformation to the Dorodnitsyn variable 17 defined as

v P
1 =\/p - d&y (8)
. 0 P2
results in
d L/qw u u h/«w u ul L/nm 1 u 1 duy
—_ —_— - d 2 —_— - —ld —_ - _ ==
ax Jg (Fl EI£> nE 0 (Fl ulé> nr 0 (p uy Uy dx
__EHEE__(§_5i> (9)
, 2
wy (pr) O L
and
L A P e A - W
dx Jy 41 £% N 0 dx t%] ax o EI t*l M
(10)

HuPw <€l t*l)
Gw(p*])zul|an /v

This derivation of equations (9) and (10) follows that of reference T
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VELOCITY AND ENTHALFY PROFILES

The usual procedure in the Von Kermen-Pohlhausen integral methods
is to assume the veloclty profile as a polynomial in the normal distance
parameter 1. The fourth-degree polynomial 1s sufficiently accurate for
most engineering purposes except stability Investigations and prediction
of separation as shown, for example, in references 4 and 19 for zero
heat transfer. There is no way of knowing beforehand whether the same
conclusions are valid 1n the presence of heat transfer. However, since
the present analyslis 1s concerned mainly with the effect on the heat
transfer of different enthalpy or temperature proflles, the fourth-
degree polynomlal for the velocity profile is used throughout for
simplicity in calculation.

The velocity proflle is then written

1‘11—; = w = Arn* + Ap(1%)2 + As(1%)3 + Ay () (11)
The usual boundary values are specified at the edge of the boundary
layer such that, at 7% =1,

w=1
v
on*
_Ez_w_ =0
()2

From these boundary conditions and equation (ll), the following relations
are obtained: —~

Ay = (S ) 12+
1= o/ 6

376 E(“*P 6 .
(12)
n =6 =2
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In order to simplify the remaining boundary condition, it is convenient
to introduce the assumptions that, in the immediate vicinity of the
surface only,

p=—0"r" (13)

P = Pwlw % (14)

These assumptions should not be unduly restrictive so long as the surface
temperature is less than 2,000° R (that is, well below the dissociation
temperature of the gas) since u, may be evaluated as accurately as
desired to correspond to Ty. Evaluating equation (L) et y =0 and

using equations (13), (1%), (8), and (12) give the required expression
for A as

0, /0%1\% au
= _l(_];> __1A2 A (15)

Hr \L. dx

In a similar manner the stagnation enthalpy profile is written as
a general polynomial in 1%,

'b*

S Temts Ba(1)2 + By(n%)? + B + . L (16)

Where up to six terms will be used. The edge boundary conditions are
taken as two or more asymptotic requirements at n% =1 and are

N

t=1

e (17)
"t

3( )™ )

where n i1s a positive Integer.
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Equations (17) imply the assumption that the thermal and velocity boundary
layers are always-of equal thickness. In contrast to this assumption,
Morduchow (ref. 6) has assumed that the thermal and veloclty layers are
always in the same ratio on any particular body. The results of the

exact solution of Brown and Donoughe (ref. 13) of wedge-type flows with
Prandtl number of 0.7, however, indicate that the nominal value of this
ratio is. approximately unity for a wide range of pressure gradients and
wall temperatures. Furthermore, the computations of Levy (ref. 20)

show .that, even for a Prandtl number as large as 5, the thermal boundary-
layer thickness can be considered as roughly 70 percent of the velocity
boundary-layer thickness because of the asymptotic nature of the profiles.
As will be shown subsequently, the results of the present analysis indi-
cate that the assumption of equations (17) gives good accuracy when used
in a certain combination with the wall boundary conditions for equation (16).

These well boundary conditions are determined from equation (5) L
and its first derivative with respect to y evaluated at 'y'=0. With!
the use of equations (13) end (14) and the transformationformulas from |
equation (8), the wall boundary conditions for the enthalpy profile may
be written as : . : \ :

A

Pp* | Sue
VY = - o 8
(an2 )w (1 "")(an)w | (18)

. | ' i

PeX) e (o*l>2au ary , o () |
(3_113—>w - o i el (55), &+ 20 - Uxf)(g;)w(gn; o

where the additional assumptions have been used that o¢ and are
constant very near the wall. By using equations (12) and the assumption
that the thermal and velocity boundary layers are of equal thickness,
equations (18) and (19) can be written as

12 + A 2
6

d°% w2
2o = 2T - (1 o)k
7

- (20)
()2

T uy 10 p Ty [dx
6Bz = = A + A w W 31 -

(Eq. (15) has also been used in eq. (19).)
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GENERAT, METHOD OF SOLUTION

The general procedure for the solution of equations (9) and (10)
consists of using two or more of the asymptotic requirements (egs. (17))
and one or both of the wall conditions (eqs. (20) and (21)) such as to
specify all but one of the coefficients of the stagnation enthalpy pro-
file in terms of A and the known external flow. The remaining coef-
ficient of equation (16), say By, and A will then be the two unknown

quaentities to be found from the simultaneous solution of equations (9)
and (10).

Before the solution can be effected, explicit expressions for the
integrals of the velocity and enthalpy profiles are requlired. Thus,
as usual for the fourth-degree velocity profile, the momentum-ioss
thickness lntegral is

1 2 ,
& - - w2)dn* = Ao
A L (w - w2)an 315 3 -3 - (22)
and the displacement thickness is
1
§_ =‘jF 1 - wan® = 36 - A o
AR (23)

The general expression for the energy-loss thickness integral 1s )
obtained as

®_ - T)an*
X [lw(l t)dn }

T g, . 103

BB-BEBL"—65O

67

=L By oL ST
280

- == B, -
10 5olu22

AL 1 1 1 1 1 1
8(55—3631‘117032‘%33'ﬁB“'§'h_OB5'B§B6> ()
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where Bp, B3, . . . will be expressed in terms of Bj through the

boundary conditions (egs. (17), (20), and (21)). The corresponding
expression for A¥/A 1is

A*‘fl —— B B, Bs By Bs Bg
A (L-Ban"=1-=-F-2-=-F-— (25)

which will be used in the solution for the flow of a perfect gas.

The only integral in equations (9) and (10) as yet unspecified
contalns the density profile pl/p. For the general case where equi-
librium dissocigtion will be considered, the density ratio as determined
from the data of reference.lT can be satisfactorily approximated by a
fifth-degree polynomial in the enthalpy h and is

2 3 b > :
1 + bp % + b3<%> + bl;(%) + b5<h%> + b6<%> (26)

In general, the quantities b3, bo, . . . will depend on the local
pressure; however, as & first approximation these quantlities are treated
as constants. For a perfect gas and constant cp, equation (26) reduces
to

LA
p

I

— T ———— = e—

The enthalpy ratio h/hB is expressed 1n terms of the stagnation-enthalpy-
drop profile T by the relation

2 2
R N R

from the definition of %. For a perfect gas, this equation reduces to
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0
The density integral < = J[‘ (—L - %ﬁ)dﬂ* can now be expressed
0

A p
in terms of A and the stagnation enthalpy profile coefficients
By, Bo, . . .. This integral is too lengthy to repeat here for the

general case with dissociation; however, for a perfect gas, it becomes
y-1_,26 y -1 2) 5% . [Ty *
= M= -+ (1 + M —t = - 1=
=—M° x ( 7 )15+ (7 % (27) .
The local skin-friction coefficient is by definition

B!

cf = ——

Dlo

1
5 Py 2
or, when transformed to n¥,
by Py ow
fT T p¥ Z\l—<3n*> (=0
1

Then, by using equations (15) and (12), the general relation is obtained

(29)

which is dependent only on the wall temperature, the external flow, and
the parameter A.

Similarly, the local convective heat-transfer rate is defined as

13
oT
-
OF /¢
or, when transformed to 1%,

Gy = - S Pw t*l<3_t£>
Pw w

(30)

>+
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since E) = cpw(él) . 'Use of equations (15) and (16) in equation (30)
Sy Jw oy fr

then gives the relation

QX Hy P x 40 5
_( i cPwTw> By UL ax AL (31)

which is dependent on the wall temperature, the external flow, and
both A and By.

APPLICATION TO FLOW OF A PERFECT GAS WITH CONSTANT p AND o

General equations.- When the results of the preceding section are
used for a perfect gas together with the assumption that the thermal

and velocity boundary lsyers are of equsl thickness, equations (9) and ;
(10) can be written as

ae , 1 dwu ( y -1 2) ( y -1 2) * (Tw ) * [ I
—_—t = —= 2 + M 0+ (1l +Lf——M 53" +{ — - 1A = y
dx W ax 2 L 2 1 T, Iy

PPw 12 + A f (32)
ul(P*l)%ﬁ 6

and

du dT By By
ook g2 -F 2 2
1 (p%1) %010
As an illustration of the detailed procedure, a fifth-degree tempera-
ture polynomial is used in the following development. This polynomial is
chosen so as to satisfy two conditions at the edge of the boundary layer

and two conditions at the wall. At the edge of the boundary layer, that
is, at ¥ =1,

ct|
]
o

(3h)
st

n*
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These two conditions at n%¥ =1 give
By =5 - 4By - 3By - 2By
and

B5'= -4 + 3B, + 2B, + By

Equations (24) and (25) may then be written as

® _ A ’
and

AY _2_1 - L - L

A3 515275 (26)

where the a's are constents and B2 and B3 depend on the known
external flow, the parameter A, and the wall temperature distribution
as determined from the two wall conditions (egs. (20) and (21)). Numeri-
cal values of the a constants are given in table I. For a perfect gas
and constant Cps these wall conditions can be written as

By = (1 - 0)—2 6 _ (37)
1T 1-Tv '
and
o 7 -1.»o \ 12 + A
6 Putty 7 _ Eﬁ T*l/Tl 1 - Ty
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/

. du dul
Comparison with flat-plate flow: = 0.~ For = = 0, the

momentum equation (32) reduces to ]

o _ , _HPw

2
dx ul(p*]_) A

since A = 0. By using equation (22) (with A= 0), this equation can
be written as

37_8a _ _ Tty

— (39)
35 ax  wy(p%))A

which by integration gives

o _, 315 _ 1 fo
A2 =y Mgy AxX (40)
37 ul(p*1)2 0

Equations (37) and (38) cen now be written as

(41)

and

Bz = o WPy 8x 42
37 37 1 - T, Putw Jg d (h2)

The energy equation (eq. (33)) is written for the flat plate as

dp _dTy/dx _  HPwPy
= -9 — = By ()4'3)
CTL - Ty ouy (%)
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or by using equation (35) with A =0 and equations (41), (42), (39),
and (40), equation (43) may be written as

__+B l>_dTW/i-x =_1|.200ng dafw/dxe
2fw 630 oo/ 1 - T, 31 " 1-Ty

Z’le

@ _ 210 OL3:L+2 )dIW/dX— I_lo+ hap(l - o)—2 1
o« 37 1-T 2ufy T /Ty 1 - Ty

(4 )

where £y = EJL—- uﬁpw dx. Integration of equation (4kt) gives the

required solution for By -

In order to compare the results directly with those of reference 12
it is convenient to set fy = X, whereupon the expression for B; 1is

y -1 ,.2
oo L @™ [ Q-o—=m" %,
l—az_—l —552(12 -1 Tw-1 2
v 1+ Io=?
_ =2
630 )dTw/dx koo — dzﬁﬁ/dx — _
(57@5 -1 30 o mo-1[ "
where x = %. end m = % - 1237 - From equations (30) and (40), the

heat transfer is

- 52w + 2

o B
L2 - ) A : (x6)

12

Ay
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where Cy = o for a constent c¢p and o. The Chapman-
kP mpy
Rubesin polynomial for the wall temperature distribution (ref. 12) is

Ty Te -
_— = — 4 a}_{n ).[.
T, T EE n (k)

Substituting equation (45) (with T, given by equation (47)) :Lnto
equation (46) and integrating result in

,/plul
37 My 1< 420 o
S

(oo 22 -3 ] il e

Thus, in order to evaluate the accuracy of the heat transfer obtained
from the present method by using a fifth-degree temperature profile,
the expression

1 3T} s %20 2 B}
al‘/315E3“37 2 + (30 22 - o)n

is to be compared with the quantity —Yn'(o) in the notation of refer-

ence 12.. This comparison can be obtained from figure 1 where expres-
sion (49) is plotted against n for several different temperature pro-
files. (MNumerical values of the o constaents are given in table I for
several of the thermal profiles used.) The results are identified with
the corresponding temperature profile by designating the degree of the
polynomial and the number of wall and, edge boundary conditions used to
form the temperature profile. The quantity -Yn'(O) from reference 12

is plotted in the seme figure. Also shown in this figure is a table of

- 3= (29)
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the percent error in the heat transfer as computed from the various

am
thermal profiles for n = O which corresponds to the case with E;E = 0.

Comparison of the results of the present method with the Chapman-
Rubesin nonisothermal flat-plate solution shows that the sixth-degree
(1 wall boundary condition, 4 edge boundary conditions), fifth-degree
(2 wall, 2 edge), and sixth-degree (2 wall, 3 edge) stagnation tempera-
ture profiles may be expected to yield satisfactory heat-transfer com-
putations when the wall temperature distribution can be approximated
by a polynomial in which the lower order terms (n < 5) predominate.
However, it 1s important to note that a polynomial for the wall tempera-
ture is not required in the present method. Thus, a general conclusion
appliceble here 1s that the heat-transfer values would be in some error

towards the rear of the body (i‘ > %) if the temperature distribution

in this region is characterized by large gradients. The reason for

the error in the present method under this condition is probably

the assumption of equal thermal and velocity boundary-layer thicknesses
since the exact solution of reference 20 shows that the thickness of
the thermal layer is reduced by increasing n.

For the purpose of comparison with the exact solution, the equi-
librium temperature T, for the flat plate can be obtained from

equation (45) with B) = 0 (corresponding to gy = 0) and
Ty = Te = Constent. Thus,

-1
(1-0)72 M2 p
20, -%‘ -1]=0
y-1,.2 T
1+ 5 My
or
Te y-1l.,2 %2 7 - 2
-e - M 2(1 - g)——
T, 1+ l+)+a,( U)~2 My

from which the recovery factor is

Fr=l+h%2(l-c)
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The values of F,. for six different temperature profiles are plotted
against o 1n figure 2. These values are to be compared with the

recovery factor from the exact solution (?aken as Fp = VE) vhich is
also plotted in figure 2.

The recovery factors resulting from the use of the fifth-degree
thermal profile (with 2 wall and 2 edge boundary conditions) are
evidently accurate to within a few percent over the range of Prandtl
numbers applicable to gases. Note that for the same number of wall
boundary conditions the recovery factor approaches unity as the number
of stream conditions is increased. This somewhat anomalous result can
probably be attributed to the effect of the assumption of equal velocity
and thermal boundary-layer thicknesses.

The wall shear stress

v =)
W = Myl
% Iy
is independent of the temperature profile and can be written as
_ [T Ui k1PL
Ty = /&=~ u,C
W 515 1oV (50)

X
T or o
0

by transforming to 1* and using equation (40) for A and equations (12)

for i* with A = 0.
on /w

Note that equation (50) can be put into the same form as the
corresponding result in reference 12 by setting Cy = C under the
integral only, where C 1is a constant equal to the average value of Cy.
This constant C wes used in & similar manner in the solution of refer-
ence 12;-hence, equation (50) differs from the exact solution only in the

value of the numerical factor VB7/515 which is about 3 percent too high.

Comparison with stagnation flow: u; approaches O0.- Approximate
expressions for the heat transfer in the stagnation region of a blunt-
nose body can be derived by noting that, in order to avoid infinite
values of @d9/dx and dp/dx as uj approaches O in equations (32)
and (33), the following equations must be satisfied:
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- PwPw
20 + &% + (Ty - 1|3 ~EZrh-o
dx ( D*]_) A 6
and
d
0 Uy MyPyr By =0

dx o(p*l)%A

By using equation (15), these conditions can be written as

0, 8%, (m A 5 12+ A
2 -+ 2=+ (Ty - 1)=—-Tyy ———=0 1

and

®_gF BL.

Y 0 (52) \

pl TW_TW —
where for this case —= = —= = —2— = Ty. For u; = 0, the quantities Bp
T, T '

and Bz are both zero so that from equations (35) and (36)

¢ _ A
Z =q + CLlBl + g(@)l + G5Bl> (53)
and
A¥ _2_1 5l
A 3 5 By (54)

Note that the constants given in equation (54) apply only for the partic-
ular fifth-degree temperature profile used in this section. For any other
profile, the constants can be easily obtained from equation (25) and the
desired boundary conditions. Using equations (53) and (54) and elimi-
nating B; between equations (51) and (52) give the following relation

between Ty and A:
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(55)

) o

(Eq_s. (22) and (23) are used for 5 end =

Defining a Nusselt number for stagnation flow as
Nu = Ok
k(T - T%9)
and using equation (31) glves

(56)

Nu _ ’l»’vw Bl
Vi &
for constant cp and o¢. This expression is plotted against Tw/Tl in

figure 3 for five temperature profiles. The corresponding values from
the exact solutions of references 13 and 14 are plotted in figure 3 for
comparison. Apparently, the present method can be expected to glve

T
accurate results for this type of flow only for T% < 0.7 and when the

fourth- or fifth-degree temperature profiles are used with two edge con-
ditions. Congideration of the shape of the temperature and velocity pro-
files given in reference 13 indicates that the erroneous results of the

present method for heating conditions (;E-> i) are probably due to the
< 1 '

inherent limitations of the veloclity profile rather then to the assump-

tion of equal thermal and velocity boundary-layer thicknesses.

Comparison with experimental recovery factors: @y = 0.~ The

recovery factors on a flat plate were calculated with good accuracy
by using the fifth-degree stagnation-temperature profile with two edge
and two wall boundary conditions. (See fig. 2.) Therefore, as a
further check on the range of applicability of the present method,
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this particular profile only is used to compute the recovery factors
on a circular cylinder for comparison with the data of Eber (ref. 16).

For zero heat transfer, gqg = O; hence, from equation (31) By =0

and the integral momentum and energy equations (egs. (32) and (33)) may
then be written as

az y -1 2 y - 1. 0\[6¥ L1 duy _

N
)
1

2
o
20‘{2%/&) 6 12 + A (57)
1\e*/ & 6
and
o - d:
& , cp@_ W, _1 die>= o (58)
ax 1 dx te - 1 ax
where
w _Te _
T*  T*
and
2 2
5] A
7, = 3
OL(A> (L)
<°l )2 T
R 2 p*. ) T*
=§°_Lcw>\(§) 1 3 1 (59)
L te L -Tul
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The quantity 2 has been introduced to avoid the use of . dzul/dx2 as

is done in the Holstein-Bohlen method. Equation (15) was used for A2
in equation (59).

A relation between A and tg can be obtained by integration of
equation (58) which gives

%%ul(te - 1) = Constant'= 0 (60)

since, at x =0, u; =0 for a body with a blunt leading edge and

% = 0 for a body with a sharp leading edge. By using eqpatioﬂs (35),

(37), (38), and (15), equation (60) cen be written

12 + A A A

A + 2 A
g__- 6 dte "6 te2 + t "™
g — - e e +
T*lld_uldx a,+l G,3+la7
T Uy A 3765 6

y-1,2 A
il /12 ag
2

(1 - o) 12 + A 6 12+2 i, (61)

which can be integrated by substituting a new dependent variable for

te~t. Thus, equations (57), (59), and (61) are to be solved simul-
taneously for Z, A, and te-

In the terminology of reference 21, the "1ocal" recovery factor
is defined as

Fp = —— = (62)
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whereas a 'local free stream” recovery factor is defined as

T
.b - [v4]
! © e
F,.' = — (63)
: e
T

where in general T*l = T*w. Both of these recovery factors have been

calculated by the present method for a circular cylinder with axis
normel to the flow. The values of uy and dul/dx needed in the cal-

culation were determined from unpublished date obtained in the Gas Dynam-
ics Branch of the Langley Laboratory. These data were run at a free-
stream Mach number of 1.98 and free-stream Reynolds number based on cyl-

inder diameter of 1.2 X 106. The resulting pressure distribution could
be closely epproximated by the empirical relation

f)_l = % M.2(0.67 + 0.98 cos 3.27%) + 1 (64)

for 0 S %-< 0.96. (The symbol 1. denotes the diameter.)

The general procedure used in the calculation was as follows: As
a first approximetion, it was assumed that te = 1; equations (57) and
(59) were then solved simultaneously for Z and A by the method of
isoclines. By using these values of A, a second approximation to the
values of tg against x was obtained from equation (61). With the
new values of te, the process can then be repeated to convergence.
Actually, in the example given, the second approximation for te was
sufficlently accurate since the use of this second spproximstion
produced no significant change in the values of A against x
determined from equations (57) and (59).

The recovery factors F,. and F,.' resulting from this calgulation
have been plotted in figure 4. The values of Fr' from the data of
Eber (ref. 16) and F, from the data of Eckert and Weise (ref. 22) are
plotted in the .same figure. Apparently, the conclusion already obtained
by several investigators for subsonic flow (for example, ref. 22 with
generel discussions available in refs. 21 and 23) that F, =~ \/G, regard-

less of body shape or axial station, is substantiated by the present
results for supersonic flow about a cylinder. This result is also known
to be vaelld for a pointed body of revolution as shown in reference 24.
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Comparison with exact solution for heat transfer on a cylinder:

T
o=1; My = 0; Eﬂ,z 1.- An exact solution for the heat transfer on a
1
cylinder was given by Goland (ref. 15). The solution postulates con-
stant gas properties and hence would be strictly applicable only to
incompressible flow with T,/T; in the neighborhood of unity. As
already shown by comparison with exact values (fig. 3), the best results

of the present method are in error by about 10 percent at %E =1 for
1

stagnation flow. Nevertheless, a comparison of thils method with Goland's
exact solution would be useful as an indication of the accuracy of the
present method with an arbitrary pressure gradient.

For calculation of the heat transfer under the most general con-
ditions, that is, in compressible flow with arbitrary pressure and
wall temperature gradients and arbitrary Prandtl number near unity,
it is convenient to write equations (32) and (33) in!: the following form:

az 7y =12 ue)ti oo ALl dw
+ 272 {2 + M= + (} + My 5+ (T, - 1) Tl = =

ax 2 1
Rop, /1 %612+ 2
2 2 ‘ 65)
and
a5 8 4aE = duy; 4T/ dx Cyw (P1L 2 1 B
@, 8, 5y M, H/E) ¥> LB (66)
dax Hax \Max Ty-1/ Buy\ei/ AF
Where
2
(&) #
R 2 \p% | oo
2 = ook o(2) ¥/ T (67)
11, T, L 21
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and

§=g " (68)

Equations (65) and (67) are of the same form as equations (57) and (59)
in the preceding section except that t, has been replaced by Tw and
By # 0. Subtraction of the momentum equation (32) from equation (66)
and use of equation (15) for A/L results in

ary, 7, L 3
z *e My ax = 5
—%—logH-E+§_+z¥Tw_l)_l-__l+_dx - . /B_}._l2+7\
dx 6 2] 1 Ty - 1 L8711 \O'H 6
A TF

‘_J

(69)

which 1s more sultable for use in the general computational procedure
than equation (66). The one-dimensional adiabatic energy equation

dul - 1 d.Ml

up M
: 7 -1,
1+ My
2

has been used in equatioﬁ~(69) for the flow outside the boundary layer.
Thus, equations (65), (67), (68), and (69) are to be solved simultaneously
for Z, A, H, and By by a suitable modification of the method of

¥* *
isoclines. The quantities %, %, AZ’ and 2!; are all functions of A

and B; as outlined previously.

For spplication to the problem considered herein, equations (65),
(69), (67), and (68) reduce to the form

' * — 10 - 3B du
2, ozl + 2 + (T, - 1) li_l=zcwR°L912+?‘ (70)
A




30 NACA TN 3005

— — 10 - d W T o=
LyogE- 1+ (T, - 2P S0 “ldx/B?l_lEM)
ax 159 ML ax o \E 6

A )'Z
(71)
2
Z—R&Cw _9_) ot 8 (72)
Ry, AN i_I_wd.u
ax
and
a+alBl+%(ah+a5Bl)
H=~-= (73)
5 2
_1_37_b_1>
35 3 14k

for Bp =B3 =0, since M =0, o=1, and Ty is a constant. Note
that the gas properties are not necessarily constant.

The same expression for the Nusselt number as given by equation (56)
can be used in this problem since T*l =Ty = Te = To for low-speed

flow. Thus, from equation (56)

qL a
Nu_ _ Voo N LU ; Bl (74)
VRop BTy = To) Y Ol Vio Vs ax

Inasmich as the present method is expected to supply accurate heat-
transfer values only under cooling conditions, the calculation has been

T
carried out for ;E = 0.74. This value gives starting values of A = 6.00

and By = 1.516 from equations (55) and (52). The results in the form
of NU/V?ZE are shown in figure 5 together with the corresponding values
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given by Goland. Over the forward portion of the body the heat-transfer
coefficients from the present method differ from the exact values by
about 5 percent; however, at least half of this difference is due to

the effect of variable gas properties as shown by comparison of quire's
solution (ref. 14) with the results of reference 13. The assumption of
equal thermal and velocity boundary-layer thiclmesses apparently gives
good results in this case.

The computation procedure for this particular problem was fairly
simple since the energy and momentum equations were found to be practi-
T.
cally independent. (For T% = 1 these equations would be entirely
independent .} Thus, as a first approximation, B, was considered

constant and equations (70) and (72) were then used to compute Z and
A against X. With this curve of A\ against X, the quantities H
and By were computed from equations (71) and (73). This second
approximation for the By curve was then used to recompute Z and A
from equations (70) and %72); however, i1f allowance is made for computa-
tional error, the new values of A are the same as the first values.

APPLTICATION TO FLOW WITH EQUILIBRIUM DISSOCTATION

In a recent paper by Moore (ref. 17) the leminar boundary-layer
characteristics with equilibrium dissociation were computed for a flat
plate. One of the conclusions obtained was that the heat-transfer rate
per unit area 1s essentially unaffected by dissociation when the plate
temperature 1s below 2,500° R. If an analogous conclusion could be
obtalned for the flow in the stagnation region of a blunt-nose body,
the equilibrium dissociation would clearly be expected to hgve little
effect on the heat transfer at any point (in the laminsr flow) on an
arbltrary body. Presumsbly, a heat-transfer calculation could be
carried out on any body with known velocity and wall temperature distri-
Eutions by the present methgd (as indicated in the section entitled

General Method of Solution ). In view of the above statement, however,
it is desirable to compute the heat transfer for the stagnation flow
first.

According to results previously given (fig. 3) for the heat transfer
in the stagnation region with a perfect gas flow, there is 1little choice
between the fourth- and fifth-degree temperature profiles for this pur-
pose. Hence, for computational simplicity, a fourth-degree enthalpy
profile with two edge and one wall boundary condition is used in this
sectlon. Thus, using equation (26) to express the demsity ratio p;/p

as a function of enthalpy and taking the limiting conditions from
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equations (9) and (10) for uj approaching O (as indicated previously
for a perfect gas) result in the following two simultaneous equations
for A and Bjy:

.K0+K1B1+K2312+K5Bl3+KuBll¥+KﬁBl =P§(_7_+_7\_>+@12+7\_

Py \10 120/ o 6A
°5 2 A 57\2) - /
o 315(3 3" % (75)
and
GWRQm + = a3)
By = (76)
ou Oy (“’_L t e

The K's are constents depending on the values of the stream enthalpy by,
the wall temperature Ty, and the b's in equation (26).

Defining a wall Nusselt number in terms of the wall values and
stream enthalpy as

and using equation (31) for the heat transfer give a heat-transfer

parameter of the form
Nu,, /pl/ Py
—— = Bl
A

G el
By ax

g
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which is directly proportional to the heat-transfer rate for constant p
and hy. This parameter is plotted in figure 6 against hy/bg for

Ty = 2,000° R. ‘The heat-transfer values for a perfect gas with no dis-

sociation are also plotted in figure 6 together with the corresponding
density changes.

According to these results, the equilibrium dissociation has a
negligible effect on the heat-transfer rate at a stagnation point.
This conclusion 1s, of course, to be regarded with caution owing to
the inherent limitations of the method. Thus, for example, the velocity
and enthalpy profile shapes are controlled only by stream and wall con-
ditions. This limitation indicates that application of the present method
to the flat plate would result in no effect of dissociation as long as
the stream and wall temperatures are below dissociation values. Since
this result agrees qualitatively with the results of Moore (ref. 17),
the over-all profile shapes are apparently not too important if the
wall and stream values can be given accurately.

Another disadvantage of the present method for application to dis-
soclation flow 1s associated with the assumption of equal thermal and
velocity boundary-layer thicknesses. The dissoclation data of refer-
ence 17 show that the Prandtl number increases to & maximum of 5 or

6 for increasing dissociation. This increase would normally imply a

smaller thermal boundary-layer thickness in comparison to the velocity
thickness. However, as noted previously, the camputations of reference 20
indicate that the thermal layer would be about 70 percent of the velocity
layer even for an increase in Prandtl number to 5 throughout the entire
boundary layer. Probably then, the present results are fairly reliable.

CONCLUSIONS

The application of the Von Kermen-Pohlhausen integral method to
the laminar boundary layer of a flowing gas has been simplified for the
general case of arbiltrary stream veloclity and wall temperature distri-
butions. The principsl simplifying assumptions and procedures are
(1) equal thermal and velocity boundary-layer thicknesses, (2) linear
viscosity-temperature relation, (3) use of the first coefficient in the
polynomial for the stagnation temperature profile as one of the unknowns
in the. final solution of the momentum and energy equations, and (4) appli-
cation of the Holstein-Bohlen method to avoid the use of the second
derivative of the stream velocity.

Comparigon of the results of the present method with the Chapman-
Rubesin nonisothermal flat-plate solution (Jour. Aero. Sci., Sept. 1949)
shows that the sixth-degree (1 wall boundary condition, 4 edge boundary
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conditions), fifth-degree (2 wall boundary conditions, 2 edge boundary
conditions), and sixth-~degree (2 wall boundary conditions 3 edge
boundary conditions) stagnation-temperature profiles may be expected
to yleld accurate heat-transfer computations except when the wall
temperature distributions ere characterized by large gradients toward
the rear of the body, a condition which would seldom be realized in
flight. The reason for the errors in the present method under this
condition is probably the assumption of equal thermal and velocity
boundary-leyer thicknesses since the exact solution of Levy (Jour.
Aero. Sci., May 1952) shows that the thickness of the thermal boundary
layer is reduced by increasing the wall temperature gradient.

On the other hand, the heat transfer in the stagnation region of
a blunt-nose body is given accurately only by the fourth-degree (1 wall
boundary condition, 2 edge boundary conditions) and the fifth-degree
(2 wall boundary conditions, 2 edge boundsry conditions) thermal pro-
files when the wall temperature is less then the local equilibrium
temperature. The error of the present method in this case, however,
appears to be caused by the inherent limitations on the velocity pro-
file (as shown by comparison with the results of Brown and Donoughe in
NACA TN 2479) rather than the assumption of equal thermal and velocity
boundary-leyer thicknesses.

The recovery factors on both the flat plate and circular cylinder
in supersonic flow were computed setisfactorily with the flfth-degree
(2 wall boundary conditions, 2 edge boundery conditions) profile. The
local recovery factors on the cylinder were independent of location
and nearly equal to the square root of the Prandtl number. These
regults are in egreement with those already obtained by severasl inves-
tigators for subsonic flow.

The above results tend to indicate that the fifth-degree stagnation
temperature or enthalpy profile will probaebly give the best over-all
accuracy for the heat-transfer calculations by the present method on
an arbitrary body for the case of heat transfer from the flowing gas
to the surface. This conclusion is substantiated by comparison of the
results obtained from the use of the fifth-degree profile with the
exact solution of Goland (Jour. Aero. Sci., July 1950) for the heat
transfer .on a cylinder.

As an illustration of possible gpplications of the method, the
heat trensfer was calculated in the stagnation region 'of a blunt body
with equilibrium dissociation. According to this calculation the
equilibrium dissociation haes a negligible effect on the heat-transfer
rate at a stagnation point. However, the results obtained for this
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extreme case should be taken as indicative only of order of magnitude
because of the inherent limitations of the method.

Langley Aeronautical Laboratory,
Natlonal Advisory Committee for Aeronautics,

Langley Field, Va., June 19, 1953.
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APPENDIX

THE EFFECT OF LATERAL RADIUS OF CURVATURE ON SKIN FRICTION

AND HEAT TRANSFER IN THE LAMINAR BOUNDARY LAYER

Seban and Bond (ref. 25) have given a solution by power series of
the incompressible-laminasr-boundary-layer equations for a slender
circular cylinder with axis parallel to the flow. The conclusion was
obtained that the changes in heat transfer and skin friction due to
the effect of lateral radius of curvature are negligible until the
square root of the body Reynolds number is of the order of or less
than 100 times the body fineness ratio.

The results of this solution substantially confirm the earlier
results of an approximate solution by Young (ref. 26) in regard to the
changes in skin friction. Young used the Von Kdrmén-Pohlhausen integral
method but assumed the veloclty-profile shape to be invariant over the
entire body length. Although the effects of lateral radius of curvature
are certainly negligible for practical body configurations at subsonic
speeds, these effects may become appreciable at supersonic speeds
because of the large relative increases in wall temperature.

The purpose of thils appendix is to show how the application of
the Von Kdrmgn-Pohlhausen method to this problem may be simplified
for compressible flow by means of a modified Dorodnitsyn transforma-
tion. The pressure gradient is assumed negligible since the results
are likely to be of importance only for bodies of high fineness ratio.
However, in accordance with the physical requirements (even for zero
pressure gradient) the dimensionless temperature and velocity-profile
shapes are allowed to change along the body length.

The boundar&—layer equations for the case of zero axial-pressure
gradient end constant Cp and o© are written as follows:

Momentum:

o, o df
ur 2 1 v 28 ay(m ) (a1)
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Continuity:
%(pur) + %(pvr) =0 (a2)
Energy:
F . A _df. m\®
purey - + pvreg S = S;(?k S;) + rp(§;> _ (A3)

In terms of the stagnation temperature defined as

2
™ = p 4 27
2cp

equation (A3) may be written

pur g%i + pvr ggi = é?(rp é@t> + (l - )jlcru é!) (Ak)

Integrating equations (Al) and (A4) across the boundary layer and
using equation (A2) gives

_d_fOO w _w2\P r =.j__w“w__<§z> N
dax Jg (ul ?>*J_Ldy P LNy /iy (45)

* —
d u t"\p r 1dTw p r Twhy (ot
—_ — _T*i_dy_g_x___.__ u - L__
dxJo w\ t¥ /P2 1 ax 1 " op*uL\yy

(6)
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If & modified Dorodnitsyn transformation of the form

Y
= P r

is introduced, equations (A5) and (A6) can be written as

w0 2
df u _ uf an = HyPy (rw> Bw)
< — - 5N, = ——=—{—) |=— (A8)
dx Jo (‘11 u12> * (p% )%y \L/ \On./
and
if”&l_idn S % [Tu _f]_),, _ Py (rF(OF
Yo ™M *) 7w ax Yo m\ ¥/ T g(px )P \L/ o,

The wall boundary conditions for the velocity and stagnation-
temperature profiles are derived from equations (Al) and (AL) evaluated
at y = 0. When the viscosity and density relations given by equa-
tions (13) and (14) and the transformation from equation (A7) are used,
these wall conditions may be written as

3% 2 ©o8 By fow
<a’1 > 'L Py _(Tw z(anr> -0 (ha0)
1
and
ern - 2 2
o t2 L 2 _cos ng(?) = (1-0) ul* G_‘_’_) (A11)
Ny L &_(r—w) e 2L \eny W
P¥I\L
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Note that, for o = 1, these equations would be of the same form and,
consequently, the velocity-profile shape w against n/B and the
stagnation-temperature-profile shape t against n/A would both be
exactly the same if the same number of edge boundary conditions were

used in both profiles. Furthermore, if & = A (with o = 1), equa-

tion (A9) must reduce to the same form as equation (A8), so that under
these conditions the additional equality g%ﬂ = 0 1is required. The effect
of the wall temperature gradient for a body of high fineness ratio is
probably negligible except on the forward part of the body where the effect
of lateral radius of curvature is small. Thus, although the results are
restricted considerably thereby, the use of the three assumptions (o = 1,

aT
5 = A, an E;E = O) should reveal the salient features of the effect of

lateral radius of curvature.

When these assumptions are used, the velocity and stagnation-
temperature profiles are written

t=w

"

where, with three asymptotic boundary cohditions at the edge_of the
boundary layer, -\

“ -
Al=12+x’= aw> _ [\ -
6 an*r a aTl*r ;
A‘E = - .7\_‘ = l azw => Jéz%
2 2R(m)%, Plw)?
f (A13)
3\ - 12
Az = c
6 - A'

A ¥, + Ag(n*r)2 + A3(1n*r)5 + Ah(n*r)u (A12) -
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The expression for A' is then obtained from either equation (A10) or
(A11) as

-k (cos ﬁ@é

co8 By A pw(r>
3 L p*l\L

A= (A14)

for 0 <A € 12.

Using equations (A12), (A1l3), and (Allk) in the momentum equation (A8)
gives

Wy (12 + ?\')2

Al
wier, W (A15)

ae _ L
ax 8

for a circular cylinder {ry being constant). The same result would, of
course, be obtained from equation (A9) by using the assumptions discussed
above. The value for 6 is cbtuained by integration of the expression

r = 315

1

Differentiating this equation and using equation (A1¥) for A gives

3-— (A")2 sx'-() —ix)5
@8 _ 3 Py r_w_)zl: % T 3 ( ar'
ax 315 p*\ L |_ 12 + N (12 + 7\")2 dax
(a16)

for constant 1. Equating (A15) and (A16) then gives a unigue rela-

tion between A' and X as
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|__2_ 12_1 ) !2_(?\l)3._5(7\'))+-
l_.l;m (") ﬁ(x) -370) 5 |

M l— (12 + A")2 (12 + x‘)”

(A17)
Integration of equation (A17) then results in

x \2 | (A')2 .25 ,..4\3
§2=(rw) =é_ 6_1_%2_(12_'_)\,)_ 03 +7)++—_6 +—8§(7\) .
Pyu1X 35 |72 288 6(12 + A') (12 + A')2

1 1Y)
[?-7\—-—5—(7\')2—L+§10g (2 + A") - 1log 1g__| (A18)
(12_'_)\1)3 12

Thus, A' +turns out to be a function only of the local body fineness
Pytp X

ratio x/2ry and the wall Reynolds number "
W

The local ‘skin-friction coefficient is defined as

2
W

%ty
1, .2
P11

cy =

or transforming to 7%, and using equations (Al3) and (Al4) results in

2

e E R (129)

cp = 4

a1 [™

The skin-friction coefficient for the flat plate with constant wall

temperature is
P E A i
=2 =
cfP 315 P PIIxX
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and is derived from equation (50). Thus, forming the ratio of the skin-
friction coefficient of the cylinder to that of the flat plate gives

1\2 2
L - p 35 /T lrca+7\> =2 g;zgi‘cf__“”‘) (A20)
oty 37 [PyX A 6 37 A 6
By

where A' is a function of ¢ from equation (A18). Similarly, the
local heat-transfer rate is

.. §_T_>
%, ),

or transforming to 7%, and using equations (A13) and (A1k) give

(12 + A')2
% = - 15 ST - Tl (a21)

The corresponding expression for the flat plate is

- _. 21 ™. . m 11 PyX 1
L P G

since, with the assumptions used herein, nemely, o =1, % =A, and

a—” = 0, the temperature profile on the plate is
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(With the present assumptions, this same temperature profile also satis-
fies equations (Al) and (A3) for the slender cylinder.) The flat-plate

relations from equations (12) and (40) with A =0 and Cy constant
have also been used to form G,- Forming the ratio of qW/qW:P then

results in

£ (A22)

The mean skin-friction coefficlent is obtained by integrating
equation (A19) from x =0 to x =1L and using equation (Al7) as the

relation between dX and dA'. The result is

Py 12 + A' hgo 5 (7\')3

5- - T = 1
P 3 12 + A Wy 12 + A

The mean skin-friction coefficient on the flat plate is

1
Cr =4|/ﬂ_‘/_i;
b 315 pl /plulL
llw-

The ratio of the mean skin-friction coefficient for the cylinder to that
of the flat plate is

Ce 1 /31551119‘.71111-h S22+ k2 5 (A')? (a23)
C 2037 L V my 3 12+ A Ak 3o 4 N

fp

where A' must correspond to the values from equation (A18) with x = L.
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In figure 7, equations (A20) and (A23) are plotted against

E = 33\/ "W which is similar to the parameter used by Seban and Bond-
Ty YPyulX

(ref. 25). The ratio cf/cfP from reference 25 is plotted against

g' = X /L in rigure 7.

Figure 7 shows that the results from the present method are in
good. agreement with those from reference 25 1f the stream Reynolds
number plglx/pl In reference 25 is replaced by the wall Reynolds
number pwulx/pw. The compressibility effect on the slender cylinder

is thus approximately accounted for by evaluating the gas properties
at the wall rather than in the free stream. This result might have
been anticipated in view of a discussion 1n reference 27 on the com-~
pressibility effect in the laminar boundary layer.

The effects of the lateral radius of curvature on both the skin
friction and heat transfer are incremsed over the incompressible effects
in almost direct proportion to Tw/Tl since

Ty s

§='I'.1'§

with the present assumption for the viscosity variation. As a practical
example, consider a body of fineness ratio 15 at M) = 5.00 and

T .
RlL =2 x 106 with E% = 5. Under these conditions the value of gL

at the rear of the body is

_EZEE_ =0.11
Pyt L
My

Ey, =

(¢, is the value of ¢ where x =L.) Then, from figure 7 the local
slkin-friction and heat-transfer coefficients would be about 20 percent
greater than those on a flat plate for the same stream conditions. The
mean skin-friction coefficient and, incidentally, the total heat transfer
would be about T percent greater than on the plate.
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TARLE I.- NUMERICAL VALUES OF o FOR EQUATION (35)

Thermal proflile
Number of
32%;23 mizl mné o ay o o oy a5 ag ay
Wall | Edge
5 2 2 0.381746 | -0.146032 | -0.053175 | -0.013889 | 0.044841 | -0.012302 | -0.003572 | -0.0007%4
6 2 3 29805 | -.09582 | -.028067| -.00552 LOh1234 | -.0101%7 | -.002L89 | -.000433
L 0 3 17381 -.028175 | © 0 029762 | -.003968 | © 0
b 1 2 326190 | -.104365 | -.025397| O OU166T | -.009921 | -.001984 | ©
5 1 3 .24 286 -.062698 | -.011508| o© .036905 | ~-.007540 | -.001150 | ©
6 1 b 187662 1 ~.0kob25 | -.005988 | © 032576 | ~.005808 | -.000758 | ©
SRR

érOOQ NI VOVN



7D

NACA TN 3005

k9

Number of
Relatlve heat-transfer values with qx—dTW =0;-n=0 Dfﬁierfxa? boundary conditions
Description of thermal profile profile Wall Edge
0 4 2 1
Number of | Number of | y,/(0) |Percent
36153;;; conditions 1 conditions n error <U> g :?5 23
o 4 0 3
4
4 0 3 0.543 2 || ¢ g i :
4 1 2 .801 1.8 A a4 1 5
5 1 3 577 -2.5
6 1 4 528 | -11.1
4 2 1 54 | -85
> 2 2 575 -2.8
6 2 3 576 -2.8 \
Exact, ref. 12 0.5815 | ©
~-3.5 T
o)
-3.0!
&
-2.5
— N
[e:)
~H
: a Exact, reference 12
2 o}
@ —2.0 |
a
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8 Q |
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d v v
v > b
a ; B> >
_1.0 N A 7 A
A
A
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0 i
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Degree of polynomial for Ty/Ty, n

Figure 1.~ Varlation of heat-transfer parameter with n for the non-

isothermal flat plate with

T,

Te
the equation — = — +
T T 55

o = 0.72. The symbol n is defined by

an}'cn .




Recovery factor, Fp

Exact solutlon, Fr=\o
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Figure 2.- The recovery factors on a flat plate obtained by various
stagnation temperature profiles from the present methed and the
exact values given by Fy = Vo.
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. Figure 3.- Varlation of heat-transfer parameter with the ratio of wall
to local stream temperature for the stagnation region of a blunt body.
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M,, Ry,
| g 2.52 8.22 ))(( 18§ Data of
Fr 1.8 1. 1 5 reference 16
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F' Present method using
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Figure 4.- Local free-stream recovery factor Fp.!

Distance from stagnation point, x/L

and local recovery

factor Py on a circular cylinder with axis normal to the flow.

Separation occurs at approximately

cylinder dismeter.

%=1.0 where I 1is the



Heat-transfer parameter, Nu/ VE:I:
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Flgure 5.- Heat transfer on & cylinder by the present method end from
Goland's exact solution.
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Figure 6.- Variation of heet-trensfer parameter with stream enthalpy
parameter with apd without dissociation at the stagnation point of a
blunt body. Well temperature, T, = 2,000° R.
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Flgure 7.~ The ratio of skin-friction and heet-trensfer coefficlents on
g slender cylinder to the corresponding coefficlents on & flat plate.

The subscript "p" denotes the flat-plate velues.
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